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that such splitting can be detected under high resolu-
tion. '8

It is of interest that, in each case, the resonance due
to the cyclopentadienyl protons appears at a higher
field than the signal reported for the parent C;H;Fe-
(CO),(COCHs;). This shift may result from replace-
ment of CO by the more basic phosphines or phosphites
which would place higher electron density on the ring.
Surprisingly, however, no systematic relationship ap-
pears to exist between the basicity of the phosphorus-
containing ligand and the chemical shift of the cyclo-
pentadienyl (and acetyl) protons.

The complexes prepared in this study contain four
different groups bonded to iron; in this respect they
resemble the cyclopentadienylecobalt!® and -rhodium?

(18) High-resolution nmr spectra of the isomeric [CsHsFe{P(CHa)z}-
(CO) ]2 show that the cyclopentadienyl resonances are triplets due to cou-
pling of the cyclopentadienyl protons with the two equivalent phosphorus
nuclei; see R. G. Hayter, J. Am. Chem. Soc., 86, 3120 (1963).
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carbonyl derivatives, C:H;M(CO)(Rr)I (M = Co,
Rh; Ry = CFy, CF;, C;Fy), and the methoxycarbonyl
compound of manganese, C;H;Mn(CO)(NO)(COO-
CHj).*'  Since the arrangement of four groups around
the metal is in all probability “tetrahedral,”?? it should
be possible to effect resolution of these organometallic
racemates into their respective enantiometers. This,
however, has not been attempted in our study.
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From the reactions of C;Hy;V(CO); and [C;H;Fe(CO),], with S, the cyclopentadienyl metal sulfides [{ CsHs)eVeSs], and (CsH -

FeS)s, respectively, have been isolated.

[(CsH;)2VaSs], is also obtained from Cs;HzV(CO)s and cyclohexene sulfide, while
[CsH:Mo(CO);s]2 and cyclohexene sulfide produce [CsH;MoS;CsHiil .

(C:;H;FeS), crystallizes in both an orthorhombic and a

monoclinic phase, respectively characterized by: space group Pnam, witha = 17444 A, b = 10488 A, ¢c = 11.348A, Z =
4; and space group C2/c or Ce, witha = 18787 A, b = 7.676 A,c = 15.073 A, 8 = 108.94°, Z = 4, The crystal structure
of the former phase, refined to R = 5.89,, shows the molecule to consist of an elongated tetrahedron of iron atoms with a sul-

fur atom above each face and a cyclopentadienyl ring projecting from each corner.
Two interiron bonds of lengths 2.644 and 2.618 A, four independent Fe—S bonds aver-

(Cs) or approximately 42m (Dsqd).

aging 2.206 A, and three independent Fe—S bonds averaging 2.256 A are present.

The molecular symmetry is exactly m

Final refinement of the cyclopentadienyl

rings by the Lipscomb—~King hindered-rotor approximation resulted in an R of 6.99,.

Introduction

The reactions of organic disulfides and mercaptans
with metal carbonyl and cyclopentadienyl metal car-
bonyl compounds have been widely explored. Ex-
amples of products isolated from such reactions are
[C;HsFe(SCH3) (CO) 1,2 [C:HV(SCHs)z o, [Mn(CO)s-
(SR)]z,* and [Fe(CO)3(SR)Js.® The reactions of ele-
mental sulfur with such metal compounds have been
less thoroughly explored; a few metal carbonyl deriva-
tives such as Co0;3(C0O),S% and Co.Fe(CO)yS” have been

(1) Contribution No. 1124,

(2) R. B. King, P. M. Treichel, and F. G. A. Stone, J. Am. Chem. Soc., 88,
3600 (1961).

(3) R. H. Holm, R. B. King, and F. G. A. Stone, Inorg. Chem., 2, 219
(1963).

(4) P. M. Treichel, J. H. Morris, and F. G. A. Stone, J. Chem. Soc., 720
(1963).

(5) R. B. King, J. Am. Chem. Soc., 84, 2460 (1962).

(8) L. Marko, G. Bor, and E. Klumpp, Chem. Ind. (London), 1491 (1961).

(7) 8. A. Khattab, L. Marko, G, Bor, and B. Marko, J. Organomeial.
Chem., 1, 373 (1964).

prepared vig reactions involving Sg.  The only reported
reaction of Sz with a cyclopentadienyl metal compound
is that with (CsH;s)sMno(NO); to give the unusual
product [C5H51\IH<NO)SQ]68

The reactions of several cyclopentadienyl metal car-
bonyl compounds with sulfur were thus pursued in a
search for additional cyclopentadienyl metal sulfide
derivatives. Cyclohexene sulfide was also investi-
gated as a potential source of reactive sulfur.

Several of the new compounds doubtless are oligo-
meric and representative of a general class of poly-
nucleates containing extensive bonding between the
constituent nuclei. The crystal structure of one of
these materials, (C;H;FeS)s;, was determined to ex-
amine the stereochemical principles displayed by such
polynucleates.

(8 T.S. Piper and G. W. Wilkinson, J. Am. Chem. Soc., T8, 900 (1956),
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Experimental Section

Reagents.—All reactions were performed in glass apparatus in
a dry, oxygen-free nitrogen atmosphere. [CsH;Fe(CO)2)s and
[CsHsMo(CO);]: (Alfa Inorganics, Inc.) and CsH;Mn(CO),
(Ethyl Corp.) were used as obtained. [C;H;Ni(CO)l; and
(CsH;)3Nia( CO), were prepared as described in the literature.®
The literature preparation®? of C;H;V(CO),; was modified in that
the solution containing (C;H;).V was evaporated and the dry
residue carbonylated at 1000 atm and 130° for 12 hr. Vields of
35-409, were consistently obtained by this procedure.

Cyclohexene sulfide (Aldrich Chemicals) and sulfur (Mallinc~
kdrodt, sublimed) were used without purification. All solvents
were dried by standard techniques before use.

Spectra.—Infrared spectra of KBr wafers were recorded on a
Perkin-Elmer Model 21 spectrophotometer from 2 to 15 u and
on a Perkin-Elmer Model 137 KBr Infrared spectrophotometer
from 13 to 25 u.

Preparation of [C;HsFeS}i.—In a nitrogen atmosphere, a solu-
tion of [C;H;Fe(CO).}2 (20.0 g, 56.5 mmioles) and S5 (5.2 g, 20.2
mmoles) in 500 ml of toluene was refluxed for 16 hr. After cool-
ing to room temperature, the solution was filtered in air and the
black solid washed with petroleum ether and air dried. This
crude product (16 g) was extracted with three 250-ml portions
of hot bromobenzene, and the extracts were stored at 5° overnight
to give 7.0 g (389,) of black crystalline (C;H;FeS);. Concentra-
tion of the filtrate gave an additional 4.5 g of less pure product
for a total of 11.5 g (629,). Recrystallization from bromoben-
zene (7.0 g/450 ml) in a nitrogen atmosphere gave 4.3 g of mixed
monoclinic and orthorhombic black crystals, dec 230-240°.
Anal. Caled for CyHsFeS: C, 39.2; H, 3.3; Fe, 36.2; S, 21.0.
Found: C, 39.7; H, 3.6; Fe, 36.7; S, 20.9.

(CsHsFeS), is stable to oxygen and water in the solid state but
slowly decomposes in solution. The solubility in organic sol-
vents is quite low and the tetrameric nature was discovered only
as a result of the crystal structure analysis. The compound is
diamagnetic with a diamagnetic susceptibility of —0.069 X 10-¢
emu/g at room temperature as measured on a Gouy balance.

The infrared spectrum of a mixture of the monoclinic and ortho-
rhombic forms (KBr pellet) showed bands at 3086 (m), 1653 (w),
1418 (s), 1351 (m), 1266 (w), 1111 (m), 1064 (m), 1013 (sh),
1016 (s), 1000 (s), 901 (w), 886 (w), 850 (m), 840 (sh), 883 (s),
822 (s), 809 (s), 796 (s), 585 (w), 442 (m), and 408 (m, br)
cm™t,

Attempted Isolation of an Intermediate in the Preparation of
[CsHFeS]s.—[CsH;Fe(CO)q)s (10.6 g, 30 mmoles), S (2.0 g, 15
mmoles), and 400 ml of benzene were refluxed for 2.0 hr in a
nitrogen atmosphere. The infrared spectrum of this solution
showed a trace of a bridge carbonyl absorption at 1780 ¢cm™! and
intense terminal carbonyl bands at 1990 and 2040 cm~!. The
mixture was cooled and filtered, and the red-brown filtrate was
applied to a 2.5 X 40 cm chromatographic column made up of
grade 1 neutral alumina (Woelm). Elution with benzene gave a
dark red eluate which was evaporated to a dark red oil. Numer-
ous attempts to crystallize this oil were unsuccessful. The oil
showed carbonyl stretching frequencies at 2041 (s) and 1992 (s)
cm™! in dichloromethane solution and appeared to be stable to
oxygen and water.

Preparation of [(C;H;).V:Ss],.—In a nitrogen atmosphere, a
solution of C;H;V(CO), (6.4 g, 28.1 mmoles) and S (1.8 g, 7.0
mmoles) in 400 ml of toluene was refluxed for 16 hr. The re-
sulting dark brown solution was cooled and the solvent removed
under vacuum to give 3.7 g of a dark brown, carbonyl-free solid.
This air-stable crude product was extracted with a total of 950 ml
of benzene and the filtered extract chromatographed in two por-
tions on 2.5 X 40 cm columns of grade 2 neutral alumina
(Woelm). No precautions for the exclusion of oxygen were taken
during this procedure. The large volume was necessary owing to
the low solubility of the product in benzene, and a black eluate
was obtained even before all of the original solution had run onto

(9) E. O. Fischer and C. Palm, Chem. Ber., 91, 1725 (1958).
(10) R. B. Kingand F. G. A. Stone, Inorg, Syn., 7, 100 (1963).
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the column. Upon elution with benzene, all of the black band
was eluted and green and brown bands remained on the column.
Further elution with dichloromethane, acetone, and ethanol
failed to move these impurity bands. The combined black
eluates were evaporated on a rotary evaporator and the residue
(3.2 g) was crystallized from 200 ml of toluene in a nitrogen
atmosphere to give 2.5 g (45%) of brown-black crystalline.
[(CsHs)2V2Ssln, mp 3809-312° dec. Amal. Caled for CyoHip-
S:Ve; C,30.6; H,2.6; V,26.0; S,40.8. Found: C, 31.3; H,
2.7, V, 26.6; S, 40.9. Low solubility precluded a solution
molecular weight determination.

The same product is obtained if cyclohexene sulfide is used in-
stead of S in the above procedure.

{(CsHj5)2V2Ss), is an air- and water-stable solid whose solutions
are slowly decomposed on standing in contact with oxygen. The
compound has low solubility in organic solvents and is decom-~
posed by dilute acid or base. The compound sublimes with some
decomposition at 200° (0.1 u) and was shown to be diamagnetic
using a Faraday microbalance.

The infrared spectrum (KBr pellet) showed bands at 3096 (m),
1653 (w), 1439 (m), 1429 (m), 1361 (w), 1064 (m), 1020 (sh),
1010 (m), 920 (w, br), 836 (sh), 813 (s), 562 (m), 526 (s), 465
(w, br), and 422 (w, br) cm ™,

The proton magnetic resonance spectrum was recorded on a
Varian A-60 spectrometer in saturated CDCl; solution and
showed a weak sharp line at 7 3.32 referred to (CH;)Si as an ex-
ternal standard.

Other Reactions with S;.—When S; and [C;H;Mo(CO)s],
were refluxed in benzene for 16 hr, a brown carbonyl-free solid
was obtained which was insoluble in a wide range of solvents and
could not be purified. Analyses of the crude product showed it
to contain C, H, 8, and Mo, but an empirical formula could not
be reliably determined.

Refluxing a solution of C;H:Mn(CO); and Ss in benzene while
irradiating with either a low-pressure mercury ultraviolet lamp
or a General Electric RS 275 sunlamp produced a precipitate of
amorphous sulfur. Subsequently C;HzMn(CO); was recovered
unchanged.

Preparation of [C;H;Mo0S;C¢Hy;],.—In a nitrogen atmosphere, a
solution of [CsH;Mo(CO);]: (6.0 g, 12.2 mmoles) and cyclohex-
ene sulfide (12.0 g, 11.5 mmoles) in 250 ml of benzene was re-
fluxed for 20 hr. On cooling the solution, the brown crystalline
solid which had formed was collected by filtration in air, washed
well with benzene, and dried at 75° (0.5 ) for 16 hr. This
crude product (6.0 g) was crystallized twice from toluene (6.0 g/
300 ml) to give 4.0 g (47%) of (CsHsMo0S:CeHyy)n, mp 250-260°
dec. Anal. Caled for CuHisMoS,: C, 42.9; H, 4.9; Mo, 31.2;
S, 20.8. Found: C, 43.0; H, 4.8; Mo, 31.9; S, 20.9.

The solubility of (CsH;MoS:CsHui), is too low in organic sol-
vents to determine the molecular weight by solution methods.
The solid compound is oxygen- and water-stable, but solutions
are very slowly decomposed upon contact with air. The com-
pound was shown to be diamagnetic using a Faraday micro-
balance.

The infrared spectrum (KBr pellet) shows bands at 3096 (m),
2941 (s), 2915 (sh), 2874 (m), 1504 (w), 1460 (s), 1449 (m),
1429 (s), 1361 (w), 1333 (s), 1299 (w), 1258 (m), 1217 (s), 1195
(w), 1167 (s), 1107 (s), 1093 (sh), 1064 (m), 1026 (sh), 1002
(s), 938 (w), 904 (w), 870 (w), 836 (sh), 818 (s), 787 (s), 730 (m),
691 (w), 568 (w), 485 (s), 441 (w), and 424 (m) cm 1.

Other Reactions with Cyclohexene Sulfide.—~The reaction of
either [C;HsNi(CO)J: or (C;H;):Nis(CO), with cyclohexene sul-
fide in refluxing benzene for 16 hr led to black insoluble solids
containing C, H, Ni, and S. The carbonyl-free products were
insoluble in a wide variety of solvents and could not be purified or
identified.

X-Ray Data for (C;H;FeS);.—Block-like crystals of an ortho-
rhombic phase of (C;HsFeS); appeared during rapid cooling of a
bromobenzene solution from 155° to about 100°. Slower cool-
ing overnight to 5° produced a further crop of needles, shown to
be a monoclinic phase of the same composition. Lattice param-
etersa = 17.444 = 0.003 A, b = 10.488 = 0.002 A, and ¢ =
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11.348 =4 0.002 A were determined for the orthorhombic phase
at 24° in an especially accurate Straumanis-type zero-level
Weissenberg camera with the use of Co Ka radiation (Ae; 1.78892
A, Nay 1.79278 A). The monoclinic lattice parameters were
similarly determined to be ¢ = 18.787 &= 0.003 A, b = 7.676 &=
0.001 A, ¢ = 15.073 &= 0.004 A, 8 = 108.94 =- 0.01°. The sys-
tematic absence of reflections 0/ with (¢ + ) odd and %0l with A
odd suggested symmetry Pnam or Pna2; for the orthorhombic
phase; the complete structure analysis shows Pnam to be correct.
Similarly, systematic absences suggested C2/c or Cc as probable
space groups for the monoclinic phase. Tests for a piezo-
electric effect were negative for both phases. Calculated densi-
ties for the orthorhombic and monoclinic phases, assuming four
molecules per cell in each case, are 1.958 and 1.977 g/cm3, re-
spectively. Densities measured by flotation are 1.95 and 1.98
g/cm?.

Intensity data were measured for all 2049 independent reflec-
tions with sin /N < 0.6 using a Picker goniometer in the moving
crystal-moving counter technique.! Zr-filtered Mo Ka radia-
tion was used, with a scintillation detector followed by a pulse-
height analyzer set to accept about 909, of the K« pulse dis-
tribution. A 1.67° range in 26 was scanned in 100 sec and a 20-
sec background count was made on either side of the peak.
Diffractometer settings and later absorption corrections were
calculated using programs written by one of the authors (C.
T.P.). Thecrystal used for intensity collection was an elongated
octahedron abotit 0.14 mm in average diameter. Transmission
factors, evaluated by numerical integration, varied from 0.65
to 0.72. The usual Lorentz-polarization factors were applied
and data brought to a common scale through usc of a standard
reflection monitored about every 4 hr. A standard deviation was
assigned to each reflection by considering counting statistics and
a 29 uncertainty in relative scale. Intensities measured as
less than 2¢ were considered absent and assigned threshold values
of 20. There were 453 sich ‘‘unobserved’” reflections.

Structure Analysis

Solution and Ellipsoidal Thermal Refinement.—
The three-dimensional Patterson function was used to
obtain a trial structure. An early false start which
satisfactorily explained all Fe-Fe and Fe-S vectors but
which was chemically somewhat unreasonable could not
be refined below R = 35% (R = Z||Fy| — |Fd|/Z|Fo)).
A second set of iron and sulfur positions was then found
which gave an R factor of 259, after four least-squares
cycles. Several F, and AF syntheses calculated at
various further stages of refinement led to location of the
remaining atoms. Although this ‘“‘heavy-atom” pro-
cedure is fairly straightforward, disorder in the posi-
tion of one cyclopentadienyl ring seems to warrant a
brief account of the evidence for disorder and steps
taken to avoid bias in the Fourier syntheses. The first
Fourier map, phased with the aid of Fe and S param-
eters, revealed the positions of all cyclopentadienyl
rings, but seemed to show disorder of the cyclopenta-
dienyl ring attached to Fe(2) (denoted Cp(2)). Cp(3),
in general position, was added to the Fe and S atoms of
the model; this action lowered R to 229, after three
least-squares cycles. Addition of the two atoms of
Cp(1) and of Cp(2) which are in general positions al-
lowed reduction of R to 15.29,. An F, map based on
phases of all atoms included at this stage confirmed the
ordered nature of Cp(1) and strengthened the evidence
for an approximate 2/5!/; disorder of Cp(2) between

(11) T. Furnas, “Single Crystal Orienter Instruction Manual,” General
Electric Co., Milwaukee, Wis., 1956.
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Figure 1.—Electron density in the planes of (a) Cp(1), (b)
Cp(2), and (¢) Cp(3). Atomic sites shown are from the least-
squares refinement. A(15)-A(18) are sites of pseudo-atoms
used to describe the disorder in Cp(2). A(17) was given a frac-
tional occupancy of 0.5 to 0.67 and A(18) 0.5 to 0.33. The con-
tours are at intervals of 1 e/A3, with the one-electron contour
dashed.

the two positions allowed by the mirror atz = !/, The
preferred position was such as to aid in destruction of a
pseudo-mirror at y = 0. To consider the possibility
that the apparent disorder was caused by a ‘‘ghost”
reflection of Cp(l) in the pseudo-mirror, an ordered
model was used which allowed reduction of R to 13.29,
in four least-squares cycles. A AF map computed at
this stage using only the Fe and S atoms confirmed the
reality of the disorder, as did the bond length pattern
in the ordered Cp(2)—a distance of about 1.6 A across
the mirror and 1.2 A between the special position atom
and its neighbors. The ordered model was, however,
refined through five anisotropic least-squares cycles to
R = 7.39),, whereit wasnear convergence. A !/,-1/;dis-
order of Cp(2) was introduced by using four atomic
sites (see Figure 1) in the ring.  This model refined to
R = 589, where it converged. A final difference map
in the ring plane indicated that the disorder is closer to
60—409%.

A modification of the Gantzel-Sparks-Trueblood
block-diagonal least-squares program!? was used for all
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TABLE I
FINAL STRUCTURAL PARAMETERS (FROM HINDERED ROTOR REFINEMENT)?
(i) Iron and Sulfur Parameters®

Atom % ¥ z B Bee Ba Bia Bia Bzz
Fe(1) 892 (1) 1403 (1) /s 167 (5) 70(1) 36 (1) 14 (2) 0 0
Fe(2) 815 (1) —1090 (1) 1/, 177 (5) 72(1) 37(1) —23(2) 0 0
Fe(3) 2460 (1) 16 (1) 1335(1) 167(3) . 52(1) 50 (1) 2(1) —-15(1) 4(2)
S(4) 2178 (2) 1637 (2) 1/y 194 (8) 47 (2) 55(2) 6 (3) 0 0
S(5) 2082 (2) — 1545 (2) A 223 (9) 52 (2) 56 (2) 1(3) 0 0
S(6) 1187 (1) 127 (2) 1022 (1) 191 (5) 80 (2) 36(1) 3(2) 3(1) 1(3)
(ii) Cyclopentadienyl Parameters®
Ring % z B N-d N-b N¢ M-d Mb M-E r b
Cp(1) 197 (3) 2614(5) /s 3.2(1) —0.7023 0.7119 0 0.7119 0.7023 0 1.232(5) 2.1(2)
Cp(2a) 4(5) —2080(7) /a 3.1(2) 0.7478 0.6639 0 —0.6639 0.7478 0 1.212(8) 1.9(2)
Cp(2b) 143 (8) —2343(14) 1/, 2.3(38) 0.7478 0.6639 0 0.6639 —0.7478 0 1.232(12) 2.3(3)
Cp(3) 3183 (2) —54(5) 259(4) 3.7(1) 0.7094 0.0353 —0.7039 0.7044 0.0002 0.7098 1.200(4) 0.39(4)

e Standard deviations are given in parentheses and apply to the least significant digit in each case.

form exp — [Buh? 4 Bunk? + Bul? 4+ Buhk + Bkl 4+ Bakl].
multiplied by 105, the remainder by 104

b Atomic x, v, and z parameters are multiplied by 104
¢ The ring %, y, z parameters are multiplied by 104,

The temperature factor is of the
B values are
Cp(2a) and Cp(2b) are alternate positions

of ring 2 and were given occupancy factors of 2/; and !/, respectively. N is a unit vector normal to the plane; M is a unit vector run-

ning from the ring center toward one atormic site.

refinement, minimizing EwHFol — chH2. The squared
reciprocal of each reflection’s standard deviation was
used as its weight. The Fourier summation programs
were those of one of the authors (C. J. F.).

It should be noted that the choice of space group is
not as unambiguous as it often is. Because the final
fit of the structural model seemed satisfactory, no
attempt was made to improve it by lowering the sym-
metry. Such a need would probably manifest itself
either as unexplained peaks in the final difference maps
or as excessive apparent thermal motion in one or more
atoms. The former effect is absent; the latter, corre-
sponding to very slight deviation from mirror sym-
metry, is present essentially only in Cp(3) and is ex-
plicable on packing grounds. It is thus very probable
that Pnam is the correct space group and it is certain
that deviations from this symmetry are at most small.

The Cyclopentadienyl Groups as Hindered Rotors.—
The rather broad range of C-C bond lengths in the
cyclopentadienyl groups (1.34-1.46 A) and the large
degree of vibrational motion present in these rings
suggested that they should be treated as hindered
rotors. The X-ray scattering by such groups has been
given by King and Lipscomb.!® It was felt that the
Lipscomb—King hindered-rotor scattering expression
would, in addition to describing the thermal motion
more accurately than the ellipsoidal mmodel, provide
reliable measures of the cyclopentadienyl bond length
without recourse to the artificial “riding” corrections
often used. The hindered-rotor model requires (in the
present case) assumption of a regular pentagonal ring
of carbon atoms and definition of a normal vector for
the ring, a vector from the ring center to one “‘potential
minimum’’ or mean atomic site, a constant describing
the barrier to rotation, and a value of the ring “‘radius”
or distance from the center to an atom. The model
does not allow thermal motion of the ring center of
gravity or permit any out-of-place tipping of the ring.

(12) Intermational Unjom of Crystallography, World List of Crystal-

lographic Computer Programs, Ist ed, Sept 1962, program 384.
(13) M. V. Kingand W. N. Lipscomb, Acta Cryst., 8, 155 (1950).

A proper description of such motion would be extremely
difficult. Recourse was therefore made to a com-
promise in which a single isotropic B value was as-
signed to the ring as a whole, together with the Lips-
comb-King parameters. The scattering by a cyclo-
pentadienyl group (j) is then givenby Fy, = foe™ 258" 0/*.
™8\ (y, a;, b;), where h is the reciprocal lattice
vector ha* -+ kb* 4 lc* k; is a vector from the origin
of the cell to the center of ring j, and M, (v, a, b) is the
Lipscomb-King A/ function, slightly changed in nota-
tion to make more explicit the v functional dependence.
Reference should be made to King and Lipscomb?? for a
complete definition of ¥ and @ and of the assumptions
involved; it suffices to say here thatb = V,/2k7, where
Vs is the height of the barrier between two minima of a
rotational potential V' = 1/2V; cos ¢, and that ¢ is a
variable containing 7, the ‘“‘radius” of the ring, as a
multiplicative constant. Together, a and + specify
the size and orientation of the ring.

It was decided in the present case to use as ring-
normal and potential-minimum vectors averages deter-
mined from the final ellipsoidal refinement. The modi-
fied Gantzel-Sparks~Trueblood least-squares program?!?
was further altered to permit refinement of the ring
radii and potential constants.

The «, v, 2z, and B parameters for each ring were used
to define a 4 X 4 matrix; » and b defined a separate 2 X
2 matrix. At the end of each cycle, parameters were
moved by a fraction of the calculated shift, the frac-
tion ranging from 0.3 in early cycles to 0.7 in the last.
Values of the M function and its derivative were ob-
tained by interpolation from tables calculated at the
beginning of each cycle, the tabular interval being
chosen to give three-figure accuracy. When the modi-
fied least-squares program had been tested, all four
independent rings (including Cp(2) with disorder fre-
quencies of 2/; and !/;) were introduced as hindered
rotors, using B = 3.0 A% b = 2.0, and r = 1.23 A for
each. R for this calculation was 16.59%,. Six cycles of
least squares reduced R to 6.99). During this refine-
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TaBLE II
FINAL PARAMETERS FROM ELLIPSOIDAL REFINEMENT®
Atom % Y % B B Bss Bia Bz Bas
Fe(l) 0,08908 (7) 0.1402 (1) 1/4 0.00170 (4)  0.0070(1) 0.00371 (8) 0.0015 (1) 0 0
Fe(2) 0.08152 (7)  —0.1080 (1) 1/4 0.00181 (4)  0.0074 (1) 0.00375(8) —0.0024 (1) 0 0
Fe(3) 0.24800 (4) 0.00186 (1) 0.1385(1) 0.00170(2) 0.0052 (1) 0.00508(5) 0.0001 (1) 0.0014 (1) 0.0005 (1)
S4) 0.2178 (1) 0.1637 (2) /s 0.00200 (6) 0.0049 (2)  0.0056 (2) 0.0007 (2) 0 0
S(5) 0.2081 (1) —~0.1548 (2) /s 0.00219 (7)  0.0053 (2)  0.0057 (2) —0.0004 (2) 0 0
S(8) 0.1188 (1) 0.0127 (1) 0.1022 (1) 0.00185(4) 0.0079 (1) 0.00361 (8) —0.,0002 (2) 0.0003 (1)  —0.0001 (2)
[e1¢)) 0.3661 (4) —0.0022 (11)  0.4017(8)  0.0021 (2) 0.0335 (2) 0.0123 (8) 0.0015(13) ~0.0052 (7) —0,001(3)
C(8) 0.3340 (4) 0.0993 (7) 0.4554 (8)  0.0047 (2) 0.0134(8)  0.0201 (9) —0.0086 (8) —0.0145(8) 0.013 (2)
Cp(8) C(8) 0.2802 (4) 0.0584 (9) 0.5361 (6)  0.0038 (3) 0.0194 (10) 0.0080 (6) 0.0034 (9) —0.0064(7) —0.008(1)
C(10) 0.2800 (5) —0.0762 (8) 0.5266 (7)  0.0054 (3) 0.0189 (9)  0.0145 (7) —0.0070(9) ~0.0124 (8) 0.023 (1)
C(11) 0.3323 (5) —0.1078(8) 0.4439 (9)  0.0057 (3) 0.0146 (8)  0.0244 (11) 0.0113(8) ~—0.0177(9) —0.014(2)
C(12)  —0.0206 (3) 0.1939 (6) 0.3126 (6) 0.0024 (2) 0.0t18¢(7) 0.0099 (7) 0.0053 (6) 0,0010 (6) 0.001 (1)
Cp(l) C(13) 0.0354 (4) 0.2873 (6) 0.3528 (6)  0.0031 (2) 0.0098 (8)  0.0098 (7) 0.0058 (6) 0.0021 (7) 0.003 (1)
C(14) 0.0692 (5) 0.3411 (8) /4 0.0030 (4) 0.0076 (8)  0.0132 (12) 0.0046 (9) 0 0
A(15) 0.0347 (4) —0.2711 (6) 0.3274 (7)  0.0036 (2) 0.0111(7y  0.0155 (8) —0.0075(7y  ~0.0044 (8) 0.012 (1)
Cp(2) A(16)  —0.0174 (4) —0.1742(7) 0.3363(8) 0.0035 (2) 0.0144 (8)  0.0144 (8) —0.0088 (7) 0.0076 (7)  —0.007 (1)
A(17)  —0.0462 (9) —0.122 (1) /4 0.0020 (5) 0.006 (1) 0.008 (2) —0.006 (1) 0 0
A(18) —0.061(1) —0.323 (2) 14 0.004 (1) 0.015 (3) 0.030 (3) —0.008 (3) 0 0

@ Figures in parentheses are standard deviations applicable to the final digit tabulated in each case.
sites for the special-position atom of Cp(2) and were given occupancies of 1/; each in the last refinement cyele.
The temperature factor is of the form exp — [BuA? -+ Buk? + Byl + Buhk

age sites of the disordered general-position atoms of Cp(2).
+ Buhi + Bykl].

ment, the Fe and S parameters changed by negligible
amounts; the ring parameters changed to those in
Table 1.

Atomic parameters at the conclusion of refinement,
with their standard deviations calculated by inversion
of the least-squares matrices, are given in Table I.
Parameters from the conclusion of the normal refine-
ment are given in Table II for comparison. Figure 2
gives interatomic distances obtained from the hindered-
rotor treatment. Angles are given in Table II1I. The
observed structure factors and those calculated with
the aid of the hindered-rotor model are presented in
Table IV,

Figure 2.—Molecular structure and bond lengths in (C;Hs-
FeS);. Smaller circles represent iron, larger omes sulfur, and
disks the centers of eyclopentadienyl rings. The Fe(2)-Cp(2)
distance is the weighted average of those for Fe(2)-Cp(2a) and
Fe(2)-Cp(2b).

Discussion

Synthetic Aspects.—The new compounds (C;HsFeS),,
[(CsHs)2 V2S5, and [CsHzMoSCeHu ], appear to have
little in common except that the iron and vanadium
compounds are definitely polynuclear and the molyb-
denum compound is most likely polynuclear also. The
infrared spectra of these compounds provide very
little useful structural information other than estab-
lishing the presence of the cyclopentadienyl group.

“Atoms” 17 and 18 are alternate
A(15) and A(18) are aver-

TaBrg III
BonD ANGLES IN (CsHgFeS),,* DEG

Fe(1)-S(6)~Fe(3) 98.1  S(6)-Fe(l)-Fe(2) 53.8
Fe(2)-S(6)-Fe(3) 98.1  §(B)-Fe(2)-Fe(1) 53.6
Fe(1)-8(4)-Fe(3) 97.9  8(4)-Fe(3)-Fe(3") 53.2
Fe(2)-S(5)-Fe(3) 97.8  8(5)-Fe(3)-Fe(3") 33.2
Fe(1)-8(6)-Fe(2) 72.8  Fe(2)~Fe(1)-Cp(1) 133.4
Fe(3)-S(4)-Fe(3') 73.5  Fe(1l)-Fe(2)-Cp(2) 135.2
Fe(3)-S(5)-Fe(3”) 73.7 Fe(3')-Fe(3)-Cp(3) 131.8
S(6)-Fe(1;-8(67) 98.9  S§(4)-Fe(1)-Cp(1) 127.4
S(6)-Fe(2)-S(6") 99.0  S(5)-Fe(2)-Cp(2) 125.5
S(4)-Fe(3)-5(5) 08.4  S(6)-Fe(3)~-Cp(3) 127.2
S(4)-Fe(1)-5(6) 80.4  S(6)-Fe(1)-Cp(1) 126.9
S(5)-Fe(2)-8(6) 80.5  S(6)-Fe(2)~-Cp(2) 127.4
S(4)-Fe(3)-3(6) 80.5 8(4)-Fe(3)-Cp(3) 127.4
S(5)-Fe(3)-8(6) 80.7 S(5)-Fe(3)-Cp(3) 126.9
S(4)-Fe(1)-Fe(2) 99.2

S(5)-Fe(2)~Fe(1) 99.2

S(8)-Fe(3)-Fe(3’) 99.1

@ The position used for Cp(2) is the average of the two posi-
tions given in Table 1.

The presence of a strong absorption at 491 cm—! in the
spectrum of [CsH;Mn(NO)S, s has been used® to infer
the presence of a S-S bond. Although the vanadium
and molybdenum compounds show strong absorptions
at 526 and 485 cm™!, respectively, even tentative
assignments of these bands to a S-S stretching fre-
quency cannot be made in the absence of supporting
structural data.}4=1® Ttisof interest to note the absence
of a band in this region in the spectrum of (C;II;FeS),,
which definitely has no S-S bonds.

(14) Comparison of the infrared spectra of (CH:S)2Fe2(CO)s and SyFea-
(COJs in the 450550 cm ! region!s shows the latter to have an additional
band of medium intensity at 472 em~1. The presence of a 8-S bond in the
latter compound has been established by X-ray analysis.!1® Unfortunately,
the presence of numerous Fe-C stretching vibrations in the same region
renders a conclusive assignment of the 472 cm~! band as a $—S stretching
frequency impossible.

(15) R. A. Schunn, unpublished results.

(16) C. H. Wei and L. F. Dahl, Inorg. Chem., 4, 1 (1965).

(17) Similarly, the compounds [CsHsV(SCHs)2le and [CsH:Mo(SCHa)qle
show no infrared absorptions in the 450-5350 cm ~! region.1s
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The appearance of absorptions in the aliphatic car-
bon-hydrogen stretching region in (CsH;MoS:CsHuy)n
supports the presence of a cyclohexylmercaptide group,
and this compound may be a mixed sulfide-mercaptide
complex. The data do not, however, rule out the pos-
sibility of the molybdenum complex being a deriva-
tive of the cyclohexane-1,2-dithiolate anion (1) or the
cyclohexene-1,2-dithiolate anion (2), which would have

the formulas [CsH:Mo(S:CeHy)ln and [CiH;Mo(Se-
Ce¢Hs) ], respectively.
g
5
S -
S
1 2

The intermediate compound in the preparation of
(CsHsFeS), is speculatively assigned the composition
[CsH3FeS(CO) ], on the basis of the infrared spectrum
and the structure of the final product (C;H;FeS)..
If structure 3 is assumed for this intermediate, a dis-

S
SN
(CsHy)( COYFE——Fe(CO)( CsH)

S
3

placement of CO by unshared pairs of electrons on
the sulfur atoms of another molecule could lead to the
formation of the tetrameric (C;H;FeS)s.

Molecular Structure.—As shown in Figure 2, (C;H;-
FeS), consists of an elongated tetrahedron of iron atoms
with a sulfur atom over each face and a cyclopentadi-
enyl group projecting from each corner. The exact
molecular symmetry is m (C;); considering the cyclo-
pentadienyl groups as point substituents, the molecule
has approximate symmetry 42m (Dyq). The two short
edges of the iron tetrahedron are interiron bonds whose
lengths of 2.618 % 0.002 and 2.644 = 0.002 A differ by
a small but experimentally significant amount, pos-
sibly because of crystalline forces. The long edges of
the iron tetrahedron are 3.368 = 0.002 and 3.365 =+
0.002 A in length and are not interiron bonds. The
Fe-S bonds fall into two classes, those paralleling the
long axis of the tetrahedron averaging 2.256 = 0.003 A
in length and those bridging the interiron bonds averag-
ing 2,206 = 0.002 A in length. No S-S bonds are
present; the shortest S-S distances are S(4)-S(6) and
S(5)-S(6) at 2.883 =+ 0.003 and 2.885 = 0.003 A, re-
spectively.

A summary of Fe-Fe and Fe-S bond lengths in re-
lated compounds is given in Table V.1¥~%2  The average
interiron bond length of 2.631 A in (C;H;FeS), is greater
than those found in the carbon-bridged complexes but
lies in the center of the range found for sulfur-bridged
interiron bonds. The rather wide variation in iron-—

(18) H. M. Powell and R. V. G. Ewens, J. Chem. Soc., 286 (1939).

(19) O. S. Mills, Acta Cryst., 11, 620 (1958).

(20) C.H., Weiand L. F. Dahl, Inorg. Chem., 4, 493 (1965).

(21) G. Johansson and W. N. Lipscomb, Acta Cryst., 11, 594 (1958).
(22) J.T. Thomas, J. H. Robertson, and E. G. Cox, 7bid., 11, 599 (1958).
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TABLE V
COMPARISON OF BOND LENGTHS

Compound Fe-Fe distance, A Fe~-8, distance, A Ref
(CsH;FeS), 2.618 %= 0.002 2.206 = 0.002¢ This
2.644 &= 0.002 2.256 == 0.003*  work
Fey(CO)s 2.46 o 18
[CsHsFe(COl2 2.49 =+ 0.02 . 19
[SFe(CO)sls 2.552 &= 0.002 2.228 == 0.003¢ 16
2.55 £=0.01 2.216 = 0.009° 20
S;Fes(CO), 2.596 = 0.008= 2.229 = 0.006¢ 20
CsFeSy(NO)H,0 2.71 £ 0.01*  2.20 = 0.02%?

2.25 == 0.01ac 21
[CoHSFe(NO)]:  2.72 =0.01  2.27 22
e This value represents an average distance for similar bonds.
® This valtue represents the S—apical Fe bond distance. ¢ This
valute represents the S—basal Fe bond distance.

S(6)

Fe(2)
-0.475

Figure 3.—Coordination about one of the iron atoms in
(C:HsFeS);. The view is along the Cp(l1)-Fe(l) axis; dis-
tances refer to heights above an arbitrary plane.

iron distances probably represents simply different
hybrid character of the orbitals used in forming the
interiron bond.?* The Fe-S distances found in (C;H;-
FeS). are very similar to those found in the other iron-
sulfur complexes.

The average Fe—Cp (ring center) distance of 1.757 =
0.005 A is somewhat longer than the values of 1.62 =
0.022% and 1.66 = 0.02 A% found in ferrocene by elec-
tron and X-ray diffraction, respectively. The longer
value found here nomnetheless agrees very well with
that of 1.75 = 0.03 A found in [C;H;Fe(CO);]5.1* The
average C—C bond length in the cyclopentadienyl rings
is 1.43 = 0.01 A, in excellent agreement with an identi-
cal value found in ruthenocene,? where rigid molecu-
lar packing made librational corrections unnecessary,
and with a librationally corrected estimate of 1.42 =
0.03 A in C:H;Mn(CO);.7

Assuming each cyclopentadienyl ring occupies three
coordination positions, each iron atom is seven-coordi-
nate. A view along the Cp(1)-Fe(l) axis of the iron
and sulfur atoms bonded to Fe(l) is given in Figure 3.
This projection of bonded atoms is similar to that
observed about the unique iron atom in S;Fes(CO), %
and the metal atoms in [C;H;Mo(CO)sle,?® CsHyNb-

(23) J. Lewis and R. 8. Nyholm, Sci. Progr., 82, 577 (1964). See p 569
ff for a discussion of the many factors influencing the lengths of intermetal
bonds.

(24) E. A. Seibold and L. E. Sutton, J. Chem. Phys., 28, 1967 (1955).

(25) J. D. Dunitz, L. E. Orgel, and A. Rich, Acia Crysi., 8, 373 (1956).

(26) G. L. Hardgrove and D. H. Templeton, ¢bid., 12, 28 (1959).

(27) R. E. Marsh and A, R. Berndt, ¢b7d., 16, 118 (1963).

(28) R. J. Doedens and L. F. Dahl, J. Am. Chem. Soc., 87, 2576 (1965).
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(CO)s,® and [(CsHs)sMo,H{P(CH,),}(CO)4].22 How-
ever, in the present case, constraints imposed by bonds
between coordinated atoms, rather than the hybridiza-
tion state of the iron atom, largely determine the co-
ordination geometry.

A few additional polynucleates based on a tetra-
hedral arrangement of metal atoms are known. A
symmetrical tetrahedral structure has been suggested
for the compound (C;H;FeCO),?* and confirmed by
preliminary X-ray studies.®® A similar structure of
43m (T4) symmetry is likely for (CsHsCrO)..?' Some-
what less directly comparable is a series of Cu(I) com-
plexes studied by Wells and co-workers. Mann,
Purdie, and Wells?? and Wells®® have shown that
[(CoHs)sAsCulls, [(C.Hs)sAsCuBrly, and [(CHs)s-
PCulls are isomorphous and have determined the
crystal structure of [(CoH;)sAsCulle. In contrast to
the (approximate) Dya symmetry of the iron complex,
the copper polynucleate has symmetry Ta. It is
composed of a regular tetrahedron of copper atoms with
an iodine atom centered over each face and a tri-
ethylarsine ligand projecting from each corner. In
this compound, the intercopper distance is 2.60 A;
Cu-I and Cu—As distances are 2.66 and 2.50 A, respec-
tively.

Evaluation of the Hindered-Rotor Model.—One re-
sult of this investigation is an evaluation of the useful-
ness of the Lipscomb-King hindered-rotor scattering
expression. The excellent agreement between the
average C-C bond length found with the use of this
expression and that found in an accurately determined
structure? where thermal parameters are small demon-
strates quite well the value of this formulation. Al-
though the final R of 6.99, is higher than that (5.8%)
obtained with the usual thermal ellipsoids, the reduc-
tion in number of parameters from 163 to 81 because
of the transition to the hindered-rotor model justifies
thisrise. Constraints placed upon the structural model
by the hindered-rotor approximation made refinement
of the disordered cyclopentadienyl group much more

(29) R. B. King, Abstracts, 150th National Meeting of the American
Chemical Society, Atlantic City, N. J., Sept. 13~17, 1965, Inorganic Division,
paper 48.

(30) L. F. Dahl, private communication.

(31) E. O. Fischer, K. Ulm, and H. P. Fritz, Chem. Ber., 98, 2167 (1960).
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Figure 4,—Packing in orthorhombic (Cs;H:;FeS),.
2 for labeling of the upper left-hand molecule.
cules are centered near y = 0, heavier onies near y = 1/,
Cp(2) is shown in its predominant position only and is disordered
with approximate frequencies 60409, between the two positions
allowed by the mirror.

See Figure
Lighter mole-
Ring

straightforward and objective than would have been
possible using ten independent carbon atoms. It must
also be observed here that the model was used in a
rather incorrect manner in describing Cp(3). As
Figure lc shows, this ring clearly librates about some
point near C(9) rather than about its center.  The
widely varying extent of thermal motion of ecyclo-
pentadienyl rings in different crystals and the known low
barrier to rotation in the gaseous state show that ther-
mal movement of these groups in the crystal is largely
determined by intermolecular forces. There is thus
no a priori reason to suppose the ring librates about its
center. Indeed, intermolecular distances in ortho-
rhombic (C;H;FeS), are greatest between the half-
molecule described in Table II and those related by
the transformations (1/, + x; 1/, — v, 2) and (}/, + «x,
—Y/y — 3, 2); i.e., between the ipper two molecules in
Figure 4, or in the immediate neighborhood of C(7).
The average bond length in this most highly moving
ring increased from 1.368 to 1.411 = 0.006 A on going
to the hindered-rotor model, compared with a change
from 1.436 to 1.448 = 0.005 A for Cp(1), which is
more rigidly restrained.



